3,937 research outputs found

    Extreme objects with arbitrary large mass, or density, and arbitrary size

    Get PDF
    We consider a generalization of the interior Schwarzschild solution that we match to the exterior one to build global C^1 models that can have arbitrary large mass, or density, with arbitrary size. This is possible because of a new insight into the problem of localizing the center of symmetry of the models and the use of principal transformations to understand the structure of space.Comment: 20 pages, 6 figures. Fixed one reference. Added a new equatio

    Super-energy tensor for space-times with vanishing scalar curvature

    Full text link
    A four-index tensor is constructed with terms both quadratic in the Riemann tensor and linear in its second derivatives, which has zero divergence for space-times with vanishing scalar curvature. This tensor reduces in vacuum to the Bel-Robinson tensor. Furthermore, the completely timelike component referred to any observer is positive, and zero if and only if the space-time is flat (excluding some unphysical space-times). We also show that this tensor is the unique that can be constructed with these properties. Such a tensor does not exist for general gravitational fields. Finally, we study this tensor in several examples: the Friedmann-Lema\^{\i}tre-Robertson-Walker space-times filled with radiation, the plane-fronted gravitational waves, and the Vaidya radiating metric.Comment: 13 pages, LaTeX 2.09. To be published in Journal of Mathematical Physic

    Comparing metrics at large: harmonic vs quo-harmonic coordinates

    Get PDF
    To compare two space-times on large domains, and in particular the global structure of their manifolds, requires using identical frames of reference and associated coordinate conditions. In this paper we use and compare two classes of time-like congruences and corresponding adapted coordinates: the harmonic and quo-harmonic classes. Besides the intrinsic definition and some of their intrinsic properties and differences we consider with some detail their differences at the level of the linearized approximation of the field equations. The hard part of this paper is an explicit and general determination of the harmonic and quo-harmonic coordinates adapted to the stationary character of three well-know metrics, Schwarzschild's, Curzon's and Kerr's, to order five of their asymptotic expansions. It also contains some relevant remarks on such problems as defining the multipoles of vacuum solutions or matching interior and exterior solutions.Comment: 27 pages, no figure

    Frame dragging and super-energy

    Full text link
    We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of super-energy on the plane orthogonal to the vorticity vector. This result, toghether with the previously established link between vorticity and super--energy in radiative (Bondi-Sachs) spacetimes strength further the case for this latter quantity as the cause of frame dragging.Comment: 12 pages Latex. To appear in Phys.Rev. D. Typos correcte

    Bel-Robinson tensor and dominant energy property in the Bianchi type I Universe

    Full text link
    Within the framework of Bianchi type-I space-time we study the Bel-Robinson tensor and its impact on the evolution of the Universe. We use different definitions of the Bel-Robinson tensor existing in the literature and compare the results. Finally we investigate the so called "dominant super-energy property" for the Bel-Robinson tensor as a generalization of the usual dominant energy condition for energy momentum tensors. Keywords: Bianchi type I model, super-energy tensors Pacs: 03.65.Pm and 04.20.HaComment: 15 pages, revised version, no figure

    Electromagnetic radiation produces frame dragging

    Full text link
    It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi--Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super--Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review

    Why does gravitational radiation produce vorticity?

    Get PDF
    We calculate the vorticity of world--lines of observers at rest in a Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super--Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacum spacetimes.Comment: 9 pages; to appear in Classical and Quantum Gravit
    corecore